If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+84x+6=0
a = 36; b = 84; c = +6;
Δ = b2-4ac
Δ = 842-4·36·6
Δ = 6192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6192}=\sqrt{144*43}=\sqrt{144}*\sqrt{43}=12\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-12\sqrt{43}}{2*36}=\frac{-84-12\sqrt{43}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+12\sqrt{43}}{2*36}=\frac{-84+12\sqrt{43}}{72} $
| 11+3w/4=5 | | 6-4x=7x-9x-4. | | 2a+7+109=100 | | 14x+4=7x-4 | | 6(2k)+5-3k=66 | | 3b+(-8)=-23 | | x/2-13=-23 | | 16y+3=82+21y | | 20+2m=3M+0 | | x^2+16x=65 | | 276/y=12 | | 6(-5/2y+10)+15y=50 | | n-14n=12 | | b/19=12 | | x+(.25x)=41.88 | | |2x+7|=-7 | | 2.6y=23.4 | | 6z+14=7z-8 | | X+2x+5=x+2 | | 3p^2+4=-2p | | 56=8(c+9) | | 7x=3-9+4 | | 12x-10x=49=9x | | 6×y=78 | | 4+6(1-7z)=-17 | | 5x=45/28 | | 30=5(2x-8) | | 4l^2-4l+8=0 | | x+4/2=x/3 | | -16x^2+100x+5=100 | | x*29+14=-131 | | 6+3b=-4b-14 |